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Relativistic two-time localization 
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Physics Department, Clarkson University, Potsdam, NY 13699.5820, USA 

Received 25 September 1991 

Abstraet. We have earlier defined the quantum two-time localization problem as the 
minimizing of a particle's position spread about specified points at two distinct limes. In 
the present article optimum localization is found for relativistic massive free particles. For 
short time intervals, spreading necessarily occurs at the speed of light while for long timer 
the previously found diffusion-like behaviour is recovered. In defining relativistic localiz- 
ation, use is made of the work of Newton and Wigner: in particular, their restriction to 
the positive energy hyperboloid is found to be necessary to recover the non-relativistic 
limit of wavepacket spreading. 

1. Introduction 

How well can the position of a particle be specified at two separate times? In a previous 
publication [ 13 we gave precise meaning to this question and provided an answer for 
certain non-relativistic quantum systems. In particular, the specification criterion was 
based on the minimization of the sum of the (quadratic) position spreads about specified 
positions. In the present article the relativistic version of this problem will be posed 
and, for free massive particles, solved. 

The results of this article confirm and amplify the picture of the relativistic to 
non-relativistic limit that was developed in [2] and [3]. There, modulo an analytic 
continuation, a particle is seen as instantaneously moving at the speed of light, reversing 
its direction at random Poisson distributed times with a rate proportional to the particle 
mass. The correlation length (or time) is the Compton wavelength ( l / m )  and, on scales 
long compared to this, the Poisson process goes over to a Wiener process. This limit 
holds for both the one (space) dimensional case, where the random walk is just that, 
and for the three space dimensional case where relativistically the 'walk' steps between 
alternate modes of wave propagation, although the non-relativistic limit allows the 
more concrete coordinate space walk interpretation. The diffusion coefficient for the 
Wiener process that results from this limit is the same as that found in the path integral 
and other characterizations of quantum stochastics, namely f i l m .  The subtlety in our 
present work is the difficulty associated with relativistic definitions of position, and in 
our handling of this issue we follow Newton and Wigner [4]. Our conclusions, consistent 
with the picture just described, are that for short times you cannot prevent wavepackets 

[ l ]  that Ax2- T, rather like diffusion. A feature that plays an important role in our 
arguments is the restriction by Newton and Wigner to the positive energy hyperboloid; 
this is essential to making sense of the non-relativistic limit of Dirac-particle wavepacket 
expansion. Without that restriction the packet would spread at the speed of light 
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indefinitely. We mention this because for some applications one uses negative frequency 
components in wave equation solutions, a use that can obscure the need for positive 
energies in what Newton and Wigner call 'elementary systems'. We will comment 
further on this point in our conclusions. 

Aside from its intrinsic interest, the answer to the localization question forms one 
of the links in the chain of reasoning justifying the need for 'special' states in loosely 
time symmetric cosmologies, which is in turn relevant to our proposed measurement 
tneory ijj. As such, the present paper is a step in that programme. 

In the next section we formulate the localization criterion and review our non- 
relativistic results. In section 3 we solve the two-time localization problem for the 
relativistic scalar free particle and in section 4 deal with Dirac particles. Section 5 is 
a discussion of the results. 

2. Formulation and non-relativistic result 

We are given a particular Hamiltonian H and two events ( x j ,  $), j = 4, b. The square 
spread about xj (at time $) is defined to be 

i - - n  h I , \  
\ Y * j l  - J "*lY't,\*Il \* * j l  J - - , Y  1 ' 1  

where +,, = exp(-i$H/ h ) q 0  and t = 0 is a fixed, fiducial time. Our goal is to minimize 
the sum (AX,,)~+(AX~)'. This is accomplished by varying +o. Optimum localization is 
thus defined as the minimizing of the functional 

W ( $ o ; X a ,  la,xb, b)'(AXa)2+(AXb)2. (2) 

By bringing the evolution operator exp(-itH/h) to bear on x instead of on &, W 
can be written 

w(d'O;xo, t e , x b ,  fb)=(+Ol*l+O) (3) 

with 

fiE ( i ( l a j  -x, j:+ iajtbj - x b  jz (4j 

and i( I) is the time-dependent Heisenberg operator 
i ( l ) =  ,iHt/n; e - iHt /h  

The two-time localization problem is thus the finding of the ground state of ri! Of 
greatest immediate interest for us will be the value of W for that +,,, i.e. the lowest 
eigenvalue of *, WO. Its dependence on T -  tb - I,, will be of paramount importance. 

In 111, the Hamiltonian (1/2m)p2+(1/2)mo2xZ was studied and we found that 

so that 

free particle. (7) hT 
WO=; 

An extension to WKB approximations for slowly varying potentials was made in [61. 
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3. Relativistic, spin-zero, *@-time localization 

Before one can localize at two times, one must give meaning to this concept at a single 
time. For this purpose we replace our non-relativistic position variable ‘x’ by that of 
Newton and Wigner [4]. There are two essential points that go into their formulation 
and we state them in terms of momentum, p E $2’. and momentum space wavefunctions 
q5(p). First, relativistic covariance fixes the momentum space volume element to be 

po= +(m2+p:+p:+p:)’/’ (8) 

dp, dp2 dp31po, with 

rather than merely dp, dp, dp,, as would be the case non-relativistically. Secondly, the 
wavefunction is defined on the positive energy hyperboloid only. For the free particle, 
time evolution of q5(p )  is given by q5(p)e-”po, with p,>O, as in (8). (Note that we 
will henceforth mostly take h = 1 and c = 1.) 

The approach of Newton and Wigner is first to postulate properties of ‘localized 
states,’ then to deduce the form those states must take as a result of these postulates 
and finally to define position operators as the operators having these states as eigenfunc- 
tions with appropriate eigenvalues. For spin-zero particles their result for the position 
operator q is 

A word of notational caution is in order here. For us, q, p E B’, while in Newton and 
Wigner contravariant and covariant vectors are distinguished and care must be exercised 
in conforming to their conventions in this regard. Using the definition of position space 
wavefunction, 

Wx, t)=(257-”“[ ~ ~ ~ ~ ~ ~ p ~ - ~ ~ p ~ + ~ ~ ~ p ~ d p , d p ~ d ~ , l ~ ~  (10) 

(where XEB’ and x.p=x,pl+x2p2+x3p3).  Newton and Wigner show that the 
operator q takes the form 

The actual form of q, as given in (9) or (1  l), is determined by the factor po. For ( P I  << m, 
po is essentially constant so that it is quite reasonable that the principal effect of the 
considerations of Newton and Wigner is to make q differ from multiplication by x 
only in a region on the order of the Compton wavelength l / m ,  as can be seen directly 
in (11). 

We will formulate the relativistic two-time localization problem as we did in the 
non-relativistic case, except that the position operator in fi (equation (4)) will be 
replaced by its relativistic counterpart. Our goal is therefore to find the lowest eigenvalue 
of the operator 

f i = ( B ( t b ) - x ~ ) 2 + ( ~ ( t ~ ) - x ~ ) 2  (12) 
with B( t )  the appropriate Heisenberg operator. 

For the non-relativistic case, the positions x. and xb did not affect WO, as could 
have been anticipated (for the free particle) on the basis of Galilean invariance, By 
the same token, for timelike separated events we can go to the frame in which x. = x, = 0. 
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Unlike Galilean relativity, transforming away from this frame does have consequences; 
however, our primary interest does not lie in this kinematical effect and we therefore 
take x,, = x, = 0. Finally, for a time translation invariant system, there is no loss in 
generality in taking is = T / 2  and t. = - T / 2 .  The operator to be studied is therefore 

( 1 3 )  
In momentum space the time evolution of 4 is easy to deduce. In that representation 

I@ = i(  T / 2 ) 2 +  i(-  T / 2 ) 2 .  

we have 

P f  = q + - .  
Po 

(The caret will be dropped henceforth.) For W this gives 

From (9) it follows that p and q have the usual commutation relations. Moreover, the 
spectrum of q is the same as that of x, namely the entire real line. For convenience in 
analysing W we will rename q. a and p, y .  The resulting investigation of the ground 
state of W is a straightforward problem in quantum mechanics with 

and v and y canonically conjugate. The cases of interest are large and small T. As 
will be seen self-consistently, for large T, y is small. We examine therefore 

The ground state of this operator has eigenvalue $( T / 2 m ) .  The relevant range of y is 
l / m ,  showing that our self-consistency condition is mT >> 1. (Equivalently: 
mc2T >> h.) From the ground state energy of H,,,. we get 

WO = 3 T / m  large T (17) 

in agreement with ( 7 )  (when h is restored and allowance made for dimension). 
For small T the significant range of y is large compared to m so that W essentially 

describes a free particle (thinking of n as momentum) in a constant potential T2/8. 
The lowest energy of such a particle is simply T 2 / 8  and its wavefunction is spread 
everywhere (in ‘y ’ ) .  It follows that 

WO = T 2 / 2  small T. ( 1 8 )  

This result is new and involves relativistic effects in an essential way. Large ‘y’ means 
large momentum and the solution (18) indicates that wavepacket spreading occurs at 
the speed of light. (Ax2-  T 2  with the factor 4 arising from squeezing at t = O ,  the 
halfway time.) 
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The qualitative validity of our conclusions about the' operator W in (15) can be 
checked by comparing W to the exactly solvable id- u,/(cosb ay)' for appropriate 
parameter values. Another check is to use the Rayleigh-Ritz variational principle, 
taking as test function m e x p ( - a y 2 / 2 ) ,  and varying with respect to alpha. We 
obtain the rigorous bound 

(19) 

For small and large T, good values of 01 can be found analytically (using the asymptotics 
of the error function). The corresponding upper bounds are as follows 

T 3 15 
4m 8m2 8Tm3' 

E,<;T~ Eo < - - -+ ~ 

In figure 1 the dashed line shows the minimum of the above two expressions. The 
solid line is a numerically determined minimum. As can be seen, the large and small 
7 asymptotics are captured in equations (17) and (18). 

A stochastic process-path integral picture of the transition from (19) to (18) will 
be deferred to the final section where previous work [2,3] provides background to 
.̂.̂I. A:"...."":-- 
DUCLl U L D C U D D I V I I .  

T.~> "1) 

Figure 1. Upper bounds for the ground state of the operator W14 given in equation (16). 
The solid line is based on numerical work using (19) and the dashed line on the analytic 
forms given in the text. 

4. Dirac equation two-time localization 

The Dirac equation can be written 

. a+ 
I - = mu& - iQuzJI 

J t  
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where 

Q = J-ieA one space dimension (22) 

Q = u. (J - ieA) three space dimensions (23) 
$, ( i  = 1,2) are complex valued functions in (dimension) d = 1 and complex valued 
(2-component) spinors in d = 3. Note that the us in (23) and the us in (20) commute 
since they act on different vector spaces. The propagator is a matrix that provides time 
evolution through 

We will only present our calculations for the one space dimension equation. For 
three space dimensions essentially the same manipulations are performed with slightly 
more elaborate objects. This parallel structure is a virtue of the Weyl representation 
(equations (20)-(24)). 

In our previous section, although we quoted the full form of the Newton-Wigner 
position operator, in ihe end that specific form piayed no roie. Tnis is because ihe 
additional term ( p / 2 p i  of equation (9)) was time independent and only iV, was 
important. For a particle with non-zero spin the Newton-Wigner position is again 
basically iV, plus time-independent pieces. For this reason we will take iV,, or the 
usual ‘x’, as position. Nevertheless, there is still an important lesson in [4] for the 
present case: energy should be positive. The propagator given in (24) acts on both 
positive and negative energies and without the positive energy restriction we would 
not recover the non-relativistic limit, as will be demonstrated shortly. 

As usual we want the lowest eigenvalue WO of the operator 

w = x( T/2)2+x(-T/2)’. (25) 

x =i[H, x j  = uz (26) 

x(t) =x+uzt .  (27) 

Proceeding blindly, the equation of motion of the Heisenberg operator x is 

so that 

This would yield 

w = 2 (  x 2 + ( 3 2 )  

whose lowest eigenvalue is simply T2/2, for all T. This is not the correct non-relativistic 
limit. 

The positive energy restriction can be implemented in various ways. We will do  SO 

by projecting out of the propagator K the relevant portion and then using this to 
modify uz (of equations (26) and (27)) in the appropriate way. 

It is useful to write the equation for K in the form 

iLK 
J K  
J t  
-= - 
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with 
L - m u x + p u x , .  

By applying J / J f  to (29), it follows that 
K K ,  e-'"'+ K2 e'*' 

with 
A =  +a= + J m 2 - J 2 / J x 2  

The operator A (which is essentially p n )  is positive and the breakup in (31) is thus 
seen to be the breakup into positive and negative energy components. Incidentally, as 
shown in [3], the usual non-relativistic propagator is obtained by applying the phase 
factor efimr, since 

(It is also of interest to note that the positive and negative transfer matrix eigenvalues 
of [2] correspond to positive and negative energies.) 

The constant operators K, and K ,  of (31) are obtained from the boundary condition 
K ( 0 )  = 1 and from (29). These imply 

K ,  =; (1  +;). (34) 

K ,  has the property K : =  K, and is therefore the projection onto the positive energy 
portion of the wavefunction. 

The operator of interest is thus not the naively calculated x of (27), but K,xK, .  
We consider first the action of K, on the velocity part of x( t )  and examine K,uzK,. 
A short calculation shows that 

(35) P K,uzK - - K , .  
'-A 

As for the Dirac particle in three dimensions, the one-dimensional particle moves 
only at v = +c,  as follows from the spectrum of uz. However, we see from (35) that 
the positive energy requirement suppresses this additional zifterbewegung effect and 
gives us the same expression for velocity that we obtained in the scalar case, 
equation (14). 

From here the analysis proceeds as in the scalar case. The projection by K, does 
affect the position part of x ( f )  since x and K ,  (which is a function of J / J x )  do not 
commute. However, when one is entirely confined to the range of K ,  the commutation 
relations of p and K , x K ,  are unchanged. (Consider [ K , x K , ,  p ]  = K J x ,  p ] K ,  .) It 
follows that for short times Wn- T2 and for long times WO- T / m .  

5. Discussion 

The result 

is consistent with the picture developed in [ 2 ]  and [3]. In those references the following 
description of Dirac particle time evolution was given: the particle moves at the speed 
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of light and reverses direction randomly with a rate m. This picture emerges from 
Feynman’s Dirac equation path integral [71 and modulo an analytic continuation the 
reversals are Poisson distributed. The correlation length (or time) is l / m  so that for 
times short compared to this all motion is effectively at the speed of light. When the 
process is smeared on timescales long compared to 1 f m one gets Wiener-process-like 
behaviour which is consistent with the diffusion-like result of the second case of 
equation (36). 

One can also look on the result (36) as the placing of a limit on the otherwise 
infinite velocity of spreading that would be predicted by Ax2- Tlm if one would 
consider this in the limit T + 0 ;  the relation of this to the imposition of a cutoff on 
the otherwise infinite velocities predicted by continuum Brownian motion theories is 
discussed in [2] and [3]. 

A point that emerges in the course of our Dirac-particle calculation is the necessity 

this, our results on wavepacket spreading would not have had the correct non-relativistic 
limit. This is of interest because in some contexts one makes use of negative frequencies. 
However, like Newton and Wigner, the object that we study is an ‘elementary system’, 
effectively an object on which the Poincart group acts irreducibly, and as such one 
for which the physical requirement of positive energy obtains. (How such an object 
would be affected by the apparatus that would measure the abstractly defined position 
could conceivably be part of a larger dynamical theory [ 8 ] ,  but is not considered in 
this article.) We remark in passing that for spin-; the Newton-Wigner operators are 
the same as the Foldy-Wouthuysen ‘mean position’ operators [8]. 

Finally we comment on the relevance of this work to the programme [SI. The use 
made there of the two-time boundary problem involves the compulsory growth of WO 
with T for free particles, as compared with the asymptotic constancy of this quantity 
for the bound state situation. The present paper shows that relativistic considerations 
are pretty much irrelevant for the large time two-time localization problem and as such 
the arguments of [SI in this regard remain intact. 

posiiive energy hy.perboio~d resif,ciioii, 88 giv.eii by ai,; Wigiier. .+iih0.Ui 
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